

Raytheon

Wireless Power Beaming – The Future is Now

IEEE COMCAS November 2019 Tel Aviv, Israel

Avram Bar-Cohen
RTN - Space and Airborne Systems

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

Wireless Power Beaming

- Tesla's (1900) and Brown's (1965) pioneering work
- Historical Wireless Power Beaming efforts
- Power Beaming Components and Atmospherics
- Long-term Applications:
 - Space Solar Power, Space-to-Space, Ground- & Interstellar **Propulsion**
- Nearer-Term Applications:
 - Quad Copters, UAV's, LTA platforms
- Conclusions

Raytheon

Nikola Tesla, 1856-1943

Born: 10 July 1856, <u>Smiljan</u>, <u>Austrian Empire</u> (modern-day Croatia)

Died: 7 January 1943(aged 86), New York City, New York, United States

Lifetime Pursuits:

Alternating current, high-voltage, high-frequency power, wireless power transmission

1899, Colorado Springs Lab: Large oscillators; Transmitted at 150 kHz with potentials >100,000 kV

1901-03, Wardenclyffe Tower, NY: World's first wireless power and communication station...lost funding

Bill Brown, Raytheon - RF Rectenna

- 1963: First RF power capture 100W output power, 15% DC-to-DC efficiency; 2.45 GHz; at 5.5m distance
- 1965/1969: Invention of ~ 55% Rectifying Antenna (Rectenna) with George, Heenan, Wonson

Raytheon

JPL - Raytheon Goldstone Experiment

■ 1975: 34 kW collected from rectenna located 1 mile (1.54 km) from

320 kW transmitter

"Receptionconversion subsystem (RXCV) for microwave power transmission system, final report," Raytheon Company, Sudbury, MA, Tech. Report No. ER75-4386, JPL Contract No. 953968, NASA Contract No. NAS 7-100, Sept. 1975

Peter Glazer - Space Solar Power Satellite

- Born in Czechosolvakia 1923, died in Cambridge, Ma 2014
- VP, Advanced Technology, Arthur D. Little, Cambridge, Ma
- 1968/1973: Inspired by Brown's power beaming technology begins work on the Solar Power Satellite

United States Patent [19]

[11]	3,781	,647	
[45]	Dec. 25.	1973	

54]	METHOD AND APPARATUS FOR CONVERTING SOLAR RADIATION TO		[56] References Cited UNITED STATES PATENTS			
	ELECTRICAL POWER	3,434,678	3/1969	Brown et al 321/8 R U		
75]	Inventor:	Peter E. Glaser, Lexington, Mass.	3,535,543	10/1970 8/1969	Dailey	
73]	Assignee:	Arthur D. Little, Inc., Cambridge, Mass.	3,432,690 3,462,636	3/1969 8/1969	Blume	
221	Filed:	July 26, 1971	3,225,208	12/1965	Wolfe 307/4:	
211	Appl. No.	165.893	3,522,433	8/1970	Houghten 325/4 U	
Related U.S. Application Data			Primary Examiner—D. F. Duggan Attorney—Bessie A. Lepper			
53]	Continuation 1969, aban	on-in-part of Ser. No. 838,896, July 3, doned.	[57]		ABSTRACT	
			Solar radiation is collected and converted to micro wave energy by means maintained in outer space on			
				satellite system. The microwave energy is then trans		

19 Claims, 6 Drawing Figures

Solar Power Satellite Patent

Power Beaming Applications

ATTENUATION OF EM WAVES BY THE ATMOSPHERE

Figure from https://upload.wikimedia.org/wikipedia/commons/7/78/Atmosph%C3%A4rische_Absorption.png

Solid-State RF Amplifiers

- 85% power added efficiency (PAE) at 2 GHz for a GaN amplifier [1]
 - 16.5 W, 12 dB Gain, 42.5V Drain Bias

[1] D. Schmelzer and S.I. Long, "A GaN HEMT class F amplifier at 2 GHz with > 80% PAE." IEEE Journal of Solid-State Circuits," vol. 42, no. 10. pp. 2130-2136. Oct. [2] M. Kamiyama, R. Ishikawa, and K. Honio, "5.65 GHz high-efficiency GaN HEMT power amplifier with harmonics treatment up to fourth order." IEEE Microwave and Wireless

Components Letters, vol. 22,

no. 6, pp. 315-317, June

2012.

High power and high efficiency GaN amplifiers have been demonstrated

- 79% PAE at 5.65 GHz for a GaN HEMT amplifier [2]
 - 2.1 W, 11 dB Gain, 20.5V Drain Bias

Solid State Optical Components

Advanced Laser Pump Modules ~65%

Figure 4.3 Graphic schematic of a pumped Yb fiber laser [68].

Multi-junction photocells ~ 40% for Sunlight Tuned PV ~ 65% (lab exp)

Ravtheon

Atmospheric & Physical Realities

Higher RF frequencies allow smaller apertures but provide lower RF efficiencies

At low RF frequencies (<9GHz) rain/fog does not greatly attenuate power beam

JAXA – Space Solar Power System 2000 -

Mankins – NASA SPS-ALPHA – 2010-

- John Mankins Artemis Innovations (former NASA)
- 5.1-5.8GHZ, 10MW Solar Power Satellite with Arbitrarily Large Phased Array (SPS-ALPHA) in LEO and GEO versions

U.S. Air Force Research Laboratory Developing Space Solar Power Beaming -\$100M to NGC, 10/24/2019

Space-to-Space Power Transfer – Low Power

- Deliver power to orbital sensors and transmitters onboard Small Sat's
- Provides continuous power through Dark and light, reducing overall weight
- Wireless power delivery of <100W is generally the need for small spacecraft
- Power radiated sources can be onboard of larger installations
- Space station currently has 90 kW of prime power
- Size and Weight of the receiving antennas are most important (< 1kg/m²)
- Lasers radiated power is a realistic option in space but RF power is currently Lower SWAP

Used with the prior permission of NASA

MicroSat remote wireless power feed

Courtesy of NASA

Space-to-Space Power Transfer – High Power

70-MW Lithium-lor Beam Spacecraft with 175-m dia. 100-MW Laser Beam photovoltaic array tuned to the laser frequency Space-based laser powers a 60,000-s Isp vehicle past Jupiter on a 12-year trip to 500 AU

John Brophy, NASA Jet Propulsion Laboratory, 4/6/17

Used with the prior permission of NASA

Laser "Sail"

Deep Space Interstellar Propulsion System

Directed Microwave Energy enables high Thrust-to-Weight Ratio circa 2012

- · Hydrogen fuel with a thermal heat exchanger for high ISP
- · Successful laboratory experiments
- · Full scale implementation still awaits

Reference: http://parkinresearch.com/microwave-thermal-rockets/ Used with the prior permission of NASA, Caltech and Dr. K. L.G Parkin)

Recent Microwave Power Beaming Experiments

Raytheon

Canadian SHARP 1987 (10 kW)

Japanese MILAX 1992 (1.25 kW)

Japanese ETHER 1995 (10 kW)

Laser Power Beaming - PowerLight Technologies Quadcopter Demo

- With Ascending Technologies (later bought by Intel)
- Specific power ~ 0.8kW/kg
- 12.5 hour flight (with 5 minute battery), limited only by venue
 - Recharge battery during flight after off- beam flight times
- Automatic tracking, including auto-acquisition
 - Plus sending location to multicopter as pseudo-GPS
- Multiple records for power beaming duration and UAV endurance

This chart is presented with the permission of PowerLight Technologies

Laser Power Beaming – PowerLight Technologies Fixed Wing UAV Demo

- Receiver designed for 2x average flight power
- Ground proof-of-concept operated 48+ hours continually, verified functionality
- Outdoor flights: Day & night, strong winds
- Tracking accurate to ~20 microradians, 1cm @ 500 m
- Altitudes up to 2,000 feet (600 meters)
- Automatic beam shut-off if >5 cm off center, when entering Laser Clearinghouse-defined windows
- Robust receiver: undamaged even on landings causing airframe damage

This chart is presented with the permission of PowerLight Technologies

Forward Power Distribution Network

Raytheon

Increased:

- Power distribution flexibility
- Resilience

Specific applications:

- Remote site energy resupply
- Ship-to-shore energy provision
- Unattended sensors

Non-Export Controlled one Side aline technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

Conclusions

- 1. Power Beaming an emerging disruptive technology for longterm and nearer-term applications – The Future Is Now!
- 2. Multiple system architectures evolving to meet system design trade-offs
 - Wavelength and antenna aperture diameter
 - "Spot Size," beaming distance, environmental impact
 - Assuring safety and control of beam front
- 3. Ongoing development of RF and HEL & PV component technologies enabling accelerated development